# 魅影·全能型应用指导

## **Technical Guide**





## 

魅影·全能型作为一款精研而成的氧化锆材料,在强度与美学的协同表达上展现了独特考量,其弯曲强度稳定于850~1200MPa<sup>(1)</sup>区间,为各类口腔冠桥修复体提供值得信赖的长期耐久支持;约45~48%的透光表现,赋予修复体自然生动的视觉层次,呼应口腔临床对于修复体颜色自然的行业追求;无论前牙区的通透质感,亦或是后牙区的力学承载,均能从容应对,为修复体制作方案提供可靠的临床选择。



(1) 数据来源: Upcera R&D Center, 根据ISO 6872方法测试。



•

## **CONTENTS** 目录

| 产品信息           |    |
|----------------|----|
| 1.1 化学组成与技术参数  | 01 |
| 1.2 预期用途       | 02 |
| 1.3 产品规格       | 02 |
|                |    |
| 制作流程           |    |
| 2.1 设计与排版      | 03 |
| 2.2 加工         | 06 |
| 2.3 分离与精修      | 07 |
| 2.4 内染色和干燥(可选) | 08 |
| 2.5 烧结         | 09 |
| 2.6 烧结后形修      | 10 |
| 2.7 外染与上釉      | 11 |
|                |    |
| 安全须知           | 14 |
|                |    |
| 附录             |    |
| 4.1 相关产品       | 15 |
| 4.2 常见问题       | 17 |

Technical Guide < Page 01 >

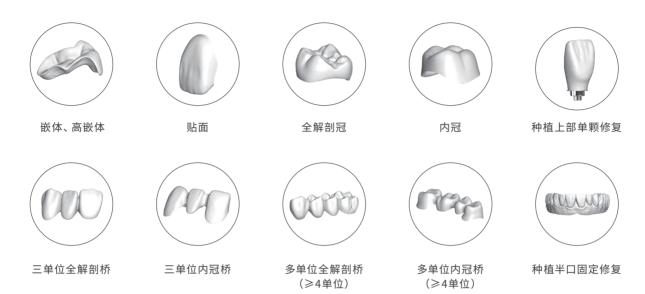
# Product Information



## 1.1 化学组成与技术参数

## 1.1.1 化学组成

| $ZrO_2 + HfO_2$               | 86.3%-94.2% | Fe <sub>2</sub> O <sub>3</sub> | <0.5% | 其他氧化物 | <0.5% |
|-------------------------------|-------------|--------------------------------|-------|-------|-------|
| Y <sub>2</sub> O <sub>3</sub> | 5.8%~9.7%   | Er <sub>2</sub> O <sub>3</sub> | <2%   |       |       |


## 1.1.2 技术参数

| 加速老化后表面单斜相含量 <5%  化学溶解性 <100µg/cm²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 半透性 (1mm, 透过率)   | 45%-48%                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------|
| 密度(烧结后) >6.0g/cm <sup>3</sup>   热膨胀系数(25-500°C) (10.5±0.5)×10 <sup>-6</sup>   加速老化后表面単斜相含量 <5% (化学溶解性 <100μg/cm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 弯曲强度 (MPa)       | 850-1200MPa                                 |
| 热膨胀系数 (25-500°C) (10.5±0.5)×10 <sup>-6</sup> 加速老化后表面单斜相含量 <5% (化学溶解性 <100μg/cm²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u></u> <u></u> <u> 起</u> <u> </u> <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 断裂韧性             | >4MPa•m <sup>1/2</sup>                      |
| 热膨胀系数 (25-500°C) (10.5±0.5)×10 <sup>-6</sup> 加速老化后表面单斜相含量 <5% (10.05±0.5)×10 <sup>-6</sup> (10.5±0.5)×10 <sup>-6</sup> (10.5±0.5)× |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 密度 (烧结后)         | >6.0g/cm <sup>3</sup>                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 要な例 product Accident consumer or consume | 热膨胀系数 (25-500°C) | (10.5±0.5)×10 <sup>-6</sup> k <sup>-1</sup> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 加速老化后表面单斜相含量     | <5%                                         |
| 放射性 ≤10Ba/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 化学溶解性            | <100µg/cm²                                  |
| 11.5Dq/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 放射性              | ≤1.0Bq/g                                    |
| 烧结温度 1480°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 烧结温度             | 1480°C                                      |

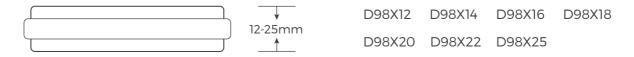
Technical Guide < Page 02 >

## 1.2 预期用途

魅影·全能型可应用多种 CAD/CAM 系统, 用于制作前牙与后牙的各类牙科修复体。



## 1.3产品规格


### 1.3.1 包装



### 1.3.2 颜色



## 1.3.3尺寸



Technical Guide < Page 03 >

## **02** 制作流程 Fabrication Process



## 高效流畅的工作流程



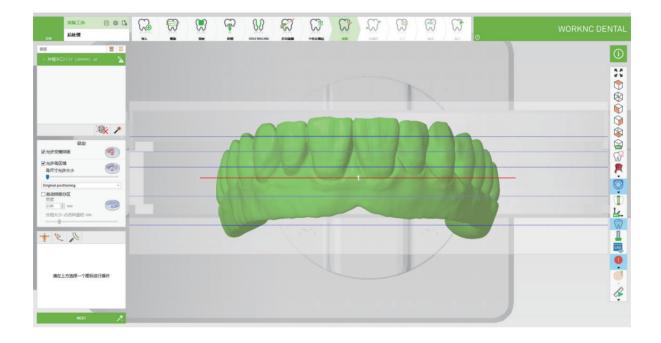
## 2.1 设计与排版

## 2.1.1 设计参数

最终烧结后的氧化锆修复体必须遵循一下设计参数:

|                        | 前列        | 牙区            | 后牙区       |               |  |  |  |  |
|------------------------|-----------|---------------|-----------|---------------|--|--|--|--|
| 适应证                    | 最小壁厚 (mm) | 连接体尺寸** (mm²) | 最小壁厚 (mm) | 连接体尺寸** (mm²) |  |  |  |  |
| 全解剖形态                  |           |               |           |               |  |  |  |  |
| 全冠                     | 0.8       |               | 1.0       |               |  |  |  |  |
| 三单位桥                   | 1.0       | 9             | 1.0       | 12*           |  |  |  |  |
| 四单位及以上桥<br>(不超过两个连续桥体) | 1.0       | 12*           | 1.0       | 15            |  |  |  |  |
| 悬臂桥<br>(游离端不超过1个桥体)    | 1.0       | 12*           | 1.0       | 15            |  |  |  |  |
| 内冠                     |           |               |           |               |  |  |  |  |
| 内冠                     | 0.4       |               | 0.6       |               |  |  |  |  |
| 三单位桥                   | 0.6       | 9             | 0.6       | 9             |  |  |  |  |
| 四单位及以上桥<br>(不超过两个连续桥体) | 0.7       | 12*           | 1.0       | 15            |  |  |  |  |
| 悬臂桥<br>(游离端不超过1个桥体)    | 1.0       | 12*           | 1.0       | 15            |  |  |  |  |

<sup>\*</sup>高度>宽度 \*\*规定的最小连接体横截面必须定位于瓷块牙本质区内


#### 重要提示:

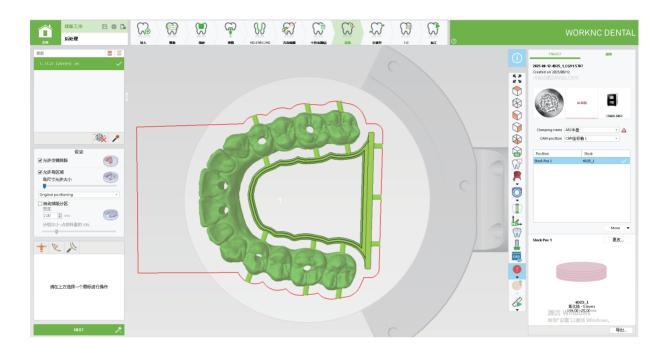
- -修复体的机械性失效(如折裂或崩瓷)可能与牙体预备质量相关。
- -确保颌面经调整后仍保持最小壁厚。
- -修复体厚度可根据临床需求进行适当调整。

Technical Guide < Page 04 >

#### 2.1.2 排版

在CAM软件中, 魅影·全能型瓷块的颈部/切端颜色分布按照预制的颜色渐变规律呈现, 并通过参考线标注分区边界。




排版时根据修复体在瓷块中所处的位置高低不同,可以准确确定切端区域的具体范围。为了实现最佳的颜色渐变匹配性,需综合考虑多个关键因素。选择与修复体高度相匹配的瓷块高度,对于最终效果的成功至关重要。下图展示了一个高度为12.6mm的修复体,在16mm高的A2色瓷块中的最佳排版空间布局。



Technical Guide < Page 05 >

#### 以下类型的修复体通常需要使用烧结支撑结构:

- -弧形桥(如前牙区)
- -具有显著曲度的多单位桥(如5单位以上大曲度修复体)



#### 烧结支撑结构

- -采用镜像对称的定位模式,将定位区域严格控制在牙冠的颈三分之一至中三分之一范围内,以确保应力分布均匀。
- -除特殊情况,应避免在桥体处设置支撑杆,特别是连接体区域。
- -在大跨度桥烧结过程中,必须添加舌侧烧结架,并根据牙冠的解剖形态动态调整厚度参数。
- -烧结支架的壁厚参数应尽量接近牙科修复体舌侧的实际厚度(理论推荐值)。

注意:以上操作均基于WORKNC DENTAL 2020.0.1923

**Technical Guide** < Page 06 >

## 2.2 加工

建议使用配有加长车针的五轴铣削设备(例如:UPFLNTMill A53)。 并采用针对该材料指定的切削策略对瓷块进行加工。务必严格遵 循设备制造商的技术规范与操作要求。



#### 加工设备维护规程:

- -在加工前,更换新车针。
- -设备校准验证(公差极限≤ 0.05毫米)。



为应对烧结过程中固有的体积收缩问题, 魅影全能型氧化锆修复体在制作时会预设特定的放大比例系数。这一补偿机制通过在 CAM 软件界面中输入"缩放系数"来实现。目前市场上存在多种 CAM 软件系统,每种系统所需的缩放参数设置各不相同。如遇任 何问题,请及时联系 CAM 软件制造商以获取技术支持。

如图所示: 氧化锆瓷块标注了精确的放尺率

1.239 GT-M-A3 D98-16 Q 1.239 19.29% L2250308052-00 4 放尺率



-安装氧化锆瓷块时,注意切端箭头方向,严禁反向安装。



-将瓷块固定于夹具时, 应确保周边凹槽与夹具接触面洁净无污染。 紧固螺丝时需采用对角交叉顺序,以实现均匀的扭矩分布。


Technical Guide < Page 07 >

## 2.3 分离与精修

所有的后处理都应在未烧结状态下进行。为避免材料损伤,切削完成后必须进行适当的表面精修处理。选择合适的工具对于确保加工质量至关重要。



建议使用细颗粒碳化钨车针或金刚石磨具对修复体进行 分离处理。



2 对连接杆部位进行平滑修整。



3 精细打磨颈缘线。



4 选用合适的车针,精细雕刻窝沟,从而塑造出自然逼真的牙体形态。



5 修整表面纹理。



**6** 用软刷彻底清除所有氧化锆粉尘,然后用无油压缩空气进 行吹扫处理。

Technical Guide < Page 08 >



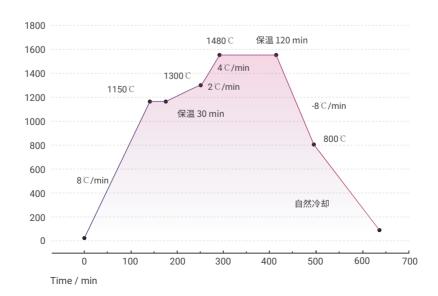
#### 实用技巧与操作建议

- -去除支撑杆时,将车针的单程切削深度限制在0.5毫米以下,以最大限度地减小材料上的应力。
- -在去除支撑及形态调整过程中,应采用轻压并单一方向操作。禁止前后往复运动,造成裂纹产生的风险。
- -推荐使用标准化的氧化锆打磨工具,并在整个操作过程中保持均匀且可控的压力。
- -若发现工具刃口变钝,例如观察到切削效率显著下降,请立即更换工具,以确保加工精度并避免材料损坏。
- -使用软毛刷轻轻清除修复体内外表面的碎屑残留。
- -如采用压缩空气辅助清洁,应确保空气无油,以防污染材料表面。
- -操作全程建议佩戴防护口罩,以降低职业性尘肺病的发生风险。

## 2.4 内染色和干燥(可选)

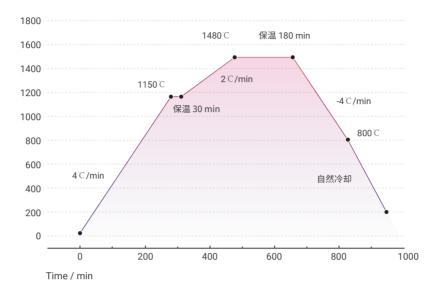
魅影·全能型是一种分层瓷块,当使用染色液进行内染色时,我们推荐用涂刷的方式进行内染色。对于氧化锆内染色的工艺流程,请严格遵循染色液制造商提供的操作指南进行。

#### 2.5 烧结


氧化锆的烧结是牙科修复体制作中最关键的步骤之一。在高温下,多孔氧化锆块会发生收缩,赋予材料最终的机械强度和光学半透明性。为确保材料性能达到最佳状态,必须严格遵守规定的烧结温度和保温时间。若温度控制不当(过低或过高)或时间偏差(过短或过长),均会导致材料性能受损。

#### 烧结魅影·全能型修复体时:

必须使用经认证的牙科氧化锆高温烧结炉。


#### 按以下烧结程序设置炉体参数:

#### 1. 标准烧结程序



Technical Guide < Page 09 >

#### 2. 半口长桥烧结程序







#### 实用技巧与操作建议

- -烧结温度是推荐值。如有必要,可进行试烧结循环,并根据需要调整烧结温度或时间。
- -经染色液渗透处理的修复体必须彻底干燥,以防止对烧结炉或修复体本身造成损害。
- -烧结过程中,修复体之间不得相互接触,以防粘连或变形。
- -始终保持烧结配件清洁无尘,避免对烧结后的修复体造成污染。
- -应根据所使用的烧结炉系统,选择合适的烧结支撑结构。
- -请同时参考相应烧结炉的使用说明书,确保操作规范。

Technical Guide < Page 10 >

## 2.6 烧结后形修

#### 2.6.1 打磨

一般来说,氧化锆修复体的轮廓是在烧结前完成的。然而,由于操作者技术水平的差异,有时可能需要在烧结后进行打磨调整。在此类情况下进行烧结后打磨时,必须注意以下事项:

#### 1. 打磨手机

建议采用无刷打磨手机,该类设备配备数字变频控制系统,可实现精准的转速调节。结合无刷感应滑轨技术,显著提升了操作稳定性与夹头夹持力。

精确的转速控制

减少机械磨损

增强的设备耐用性

卓越的噪声抑制性能

修复体形态修整过程中,车针转速应保持在15000转/分钟以下。



#### 2. 打磨车针选择指导

在标准转速条件下,不同车针对修复体边缘完整性的影响如下:





材料特性:碳化硅研磨颗粒

使用推荐: 边缘崩裂风险高, 谨慎使用



粗颗粒氧化锆专用车针

材料特性: 仍可能导致微裂纹

使用推荐: 仅限于终烧前阶段



细颗粒氧化锆专用车针

材料特性: 有效保持边缘完整性

使用推荐: 推荐用于最终形态修整

Technical Guide < Page 11 >

### 2.6.2 抛光

对全解剖形态修复体咬合接触点进行抛光至关重要。精细抛光可有效避免对对颌牙的异常磨耗。在完成咬合关系调整并进行研磨后,务必仔细抛光咬合面。建议使用氧化物陶瓷专用抛光工具及抛光剂进行操作。





#### 实用技巧与操作建议

- -烧结后的魅影·全能型氧化锆修复体应尽量减少打磨处理,保证最小修复体厚度。最好加工后不进行打磨处理。
- -必须使用洁净无痕的打磨工具进行操作调整修复体时采用轻柔压力和低速操作,避免产生锐利边缘。
- -桥体连接体部位严禁使用分割片进行后期分离。
- -建议使用橡胶抛光头对桥体连接体的基底面进行抛光,以获得更光滑的表面。
- -加工过程中不得低于该材料所要求的最小壁厚及连接体尺寸标准。
- -在精修前后均应对修复体进行检查,确保无缺陷或裂纹产生。
- -在试戴和调整修复体时,保持代型位于模型上,并整体试戴以确保密合性。
- -使用流动清水冲洗修复体,或采用蒸汽清洁去除表面残留物后彻底干燥。

Technical Guide < Page 12 >

## 2.7 外染与上釉

#### 2.7.1外染技术

建议使用爱尔创Realism写实派釉膏进行染色操作。根据实际需要,可将染色与上釉步骤合并或分开执行。具体操作方法请参阅 Realism写实派产品使用说明书。



- -写实派釉膏既可单独使用,也可根据需要按任意比例混合使用,以实现修复体的个性化特征塑造。釉液可用于调节混合后的稠度,使其更易于操作。
- -若罐内膏体出现分层现象,请使用玻璃、塑料或氧化锆材质的搅拌棒充分搅拌均匀。取适量材料置于调色板上,如需获得更稀薄的质地,可按适当比例加入釉液进行稀释。
- -效果色特别适用于修复体的个性化美学重建,可逼真再现牙釉质、牙颈部色素沉着及窝沟点隙等自然牙体特征。

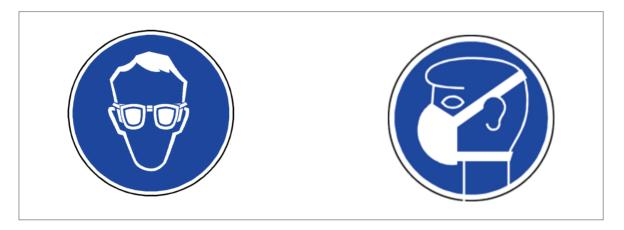


- 基础色 A 模拟牙本质颜色
- 蓝灰色 增强切端半透性
- 深粉色 模拟游离龈颜色特征

- 橄榄黄色 模拟发育叶颜色
- -白色 模拟微裂纹特征
- 粉色 重建牙间龈颜色特征

Technical Guide < Page 13 >

# **03** 安全须知 Safety Notice




## 注意

本产品须由受训专业人员操作使用。因制造商无法监控操作规范及使用合规性,对任何结果偏差概不承担法律责任。据此,一切损害赔偿请求仅限于产品本身价值范畴。

## 安全须知

- 1. 避免与坚硬材料碰撞, 防止挤压或剧烈震动。
- 2.材料未完全烧结前,不得用于患者口腔内。
- 3.本产品仅供牙科专业人员操作使用。
- 4.操作时请佩戴合适的防护口罩,以防吸入粉尘。使用吹气装置时应短促间断操作,避免持续气流造成粉尘飞扬,从而减少空气 污染风险。



## 废弃物处理

本产品对环境无害,可按常规非危险废弃物进行处理。

Technical Guide < Page 14 >

**04** 附录 Appendix



## 4.1 相关产品

## 氧化锆打磨抛光专业套装



## **UPFLNTMill A53**



Technical Guide < Page 15 >

## UPCERA HiFi 674



## Realism写实派全瓷烤瓷粉



Technical Guide < Page 16 >

## 4.2 常见问题

#### Q: 如何辨别魅影·全能型瓷块的咬合面/切端所在的一侧?

A: 箭头指向即为咬合面/切端面。

#### Q: 受潮的氧化锆修复体是否可以被烧结?

A:氧化锆修复体在烧结前必须在专用干燥箱中彻底干燥。残留水分会在高温烧结(1480-1500°C)过程中瞬间汽化,产生内部应力,从而导致裂纹的形成。

#### Q: 全解剖形态修复体在戴入患者口内前, 是否必须对其表面进行抛光?

A: 如果在患者口内进行了咬合接触的调磨,则必须进行抛光处理。未遵循此操作可能导致对对颌牙产生过度磨损。



## 深圳爱尔创口腔技术有限公司

Shenzhen Upcera Dental Technology Co., Ltd. E-mail:services@upcera.com 网址: www.upcera.com



**\*** 400-6785005







自助报修程序